SECTION 23 0923
DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 GENERAL

1.01 SECTION INCLUDES

A. System description.
B. Operator interface.
C. Controllers.
D. Power supplies and line filtering.
E. System software.
F. Controller software.
G. HVAC control programs.
H. Chiller control programs.

1.02 RELATED REQUIREMENTS

A. Section 23 0913 - Instrumentation and Control Devices for HVAC.
B. Section 23 0993 - Sequence of Operations for HVAC Controls.
C. Section 26 2717 - Equipment Wiring: Electrical characteristics and wiring connections.
D. Section 28 1300 - Access Control.
E. Section 28 1600 - Intrusion Detection.
F. Section 28 3100 - Fire Detection and Alarm.

1.03 REFERENCE STANDARDS

E. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
F. UL (DIR) - Online Certifications Directory; current listings at database.ul.com.

1.04 ADMINISTRATIVE REQUIREMENTS

A. Preinstallation Meeting: Conduct a preinstallation meeting one week prior to the start of the work of this section; require attendance by all affected installers.

1.05 SUBMITTALS

A. See Section 01 3000 - Administrative Requirements for submittal procedures.
B. Product Data: Provide data for each system component and software module.
C. Shop Drawings:
 1. Indicate trunk cable schematic showing programmable control unit locations, and trunk data conductors.
 2. List connected data points, including connected control unit and input device.
 3. Indicate system graphics indicating monitored systems, data (connected and calculated) point addresses, and operator notations. Provide demonstration diskette containing graphics.
 4. Show system configuration with peripheral devices, batteries, power supplies, diagrams, modems, and interconnections.
5. Indicate description and sequence of operation of operating, user, and application software.

D. Manufacturer's Instructions: Indicate manufacturer's installation instructions for all manufactured components.

E. Project Record Documents: Record actual locations of control components, including control units, thermostats, and sensors.
 1. Revise shop drawings to reflect actual installation and operating sequences.
 2. Include submittals data in final "Record Documents" form.

F. Operation and Maintenance Data:
 1. Include interconnection wiring diagrams complete field installed systems with identified and numbered, system components and devices.
 2. Include keyboard illustrations and step-by-step procedures indexed for each operator function.
 3. Include inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.

G. Warranty: Submit manufacturer's warranty and ensure forms have been filled out in Owner's name and registered with manufacturer.

1.06 QUALITY ASSURANCE

A. Perform work in accordance with NFPA 70.

B. Designer Qualifications: Perform design of system software under direct supervision of a Professional Engineer experienced in design of this type of work and licensed in Michigan.

C. Manufacturer Qualifications: Company specializing in manufacturing products specified in this section with minimum three years of documented experience.

D. Installer Qualifications: Company specializing in performing work of the type specified and with minimum three years of documented experience.

E. Products Requiring Electrical Connection: Listed and classified by UL (DIR) as suitable for purpose specified and indicated.

1.07 WARRANTY

A. See Section 01 7800 - Closeout Submittals for additional warranty requirements.

B. Provide five year manufacturer's warranty for field programmable micro-processor based units.

1.08 PROTECTION OF SOFTWARE RIGHTS

A. Prior to delivery of software, the Owner and the party providing the software will enter into a software license agreement with provisions for the following:
 1. Limiting use of software to equipment provided under these specifications.
 2. Limiting copying.
 3. Preserving confidentiality.
 4. Prohibiting transfer to a third party.

PART 2 PRODUCTS

2.01 MANUFACTURERS

A. Trane USA __________. www.trane.com

B. Substitutions: Not Permitted.

2.02 SYSTEM DESCRIPTION

A. Automatic temperature control field monitoring and control system using field programmable micro-processor based units.

B. Base system on distributed system of fully intelligent, stand-alone controllers, operating in a multi-tasking, multi-user environment on token passing network, with central and remote hardware, software, and interconnecting wire and conduit.
C. Include computer software and hardware, operator input/output devices, control units, local area networks (LAN), sensors, control devices, actuators.

D. Controls for variable air volume terminals, radiation, reheat coils, unit heaters, fan coils, and the like when directly connected to the control units. Individual terminal unit control is specified in Section 23 0913.

E. Provide control systems consisting of thermostats, control valves, dampers and operators, indicating devices, interface equipment and other apparatus and accessories required to operate mechanical systems, and to perform functions specified.

F. Include installation and calibration, supervision, adjustments, and fine tuning necessary for complete and fully operational system.

2.03 OPERATOR INTERFACE

A. Workstation, controllers, and control backbone to communicate using BACnet protocol and addressing.

B. BACnet protocol to comply with ASHRAE Std 135.

C. Hardware:
 1. Hand Held Device:
 a. Provide remote system access via PDA with browser agnostic connectivity, including controller point monitor and control access to the following data:
 1) Alarm.
 2) Summary.
 3) Schedule.
 4) Trend.
 b. Provide the capability to view in text list based format.
 c. Minimum Functionality:
 1) Set point adjustment.
 2) Alarm acknowledgement.
 3) Scheduling.

2.04 CONTROLLERS

A. BUILDING CONTROLLERS
 1. General:
 a. Manage global strategies by one or more, independent, standalone, microprocessor based controllers.
 b. Provide sufficient memory to support controller's operating system, database, and programming requirements.
 c. Share data between networked controllers.
 d. Controller operating system manages input and output communication signals allowing distributed controllers to share real and virtual object information and allowing for central monitoring and alarms.
 e. Utilize real-time clock for scheduling.
 f. Continuously check processor status and memory circuits for abnormal operation.
 g. Controller to assume predetermined failure mode and generate alarm notification upon detection of abnormal operation.
 h. Communication with other network devices to be based on assigned protocol.
 2. Communication:
 a. Controller to reside on a BACnet network using ISO 8802-3 (ETHERNET) Data Link/Physical layer protocol.
 b. Perform routing when connected to a network of custom application and application specific controllers.
 c. Provide service communication port for connection to a portable operator's terminal or hand held device with compatible protocol.
 3. Anticipated Environmental Ambient Conditions:
 a. Outdoors and/or in Wet Ambient Conditions:
1) Mount within waterproof enclosures.
2) Rated for operation at 40 to 150 degrees F.

b. Conditioned Space:
1) Mount within dustproof enclosures.
2) Rated for operation at 32 to 120 degrees F.

4. Local Keypad and Display for each Controller:
a. Use for interrogating and editing data.
b. System security password prevents unauthorized use.

5. Provisions for Serviceability:
a. Diagnostic LEDs for power, communication, and processor.
b. Make all wiring connections to field removable, modular terminal strips, or to a termination card connected by a ribbon cable.

6. Memory: In the event of a power loss, maintain all BIOS and programming information for a minimum of 72 hours.

7. Power and Noise Immunity:
a. Maintain operation at 90 to 110 percent of nominal voltage rating.
b. Perform orderly shutdown below 80 percent of nominal voltage.
c. Operation protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W. at 3 feet.

B. CUSTOM APPLICATION CONTROLLERS

1. General:
a. Provide sufficient memory to support controller's operating system, database, and programming requirements.
b. Share data between networked, microprocessor based controllers.
c. Controller operating system manages input and output communication signals allowing distributed controllers to share real and virtual object information and allowing for central monitoring and alarms.
d. Utilize real-time clock for scheduling.
e. Continuously check processor status and memory circuits for abnormal operation.
f. Controller to assume predetermined failure mode and generate alarm notification upon detection of abnormal operation.
g. Communication with other network devices to be based on assigned protocol.

2. Communication:
a. Controller to reside on a BACnet network using MS/TP Data Link/Physical layer protocol.
b. Provide service communication port for connection to a portable operator's terminal or hand held device with compatible protocol.

3. Anticipated Environmental Ambient Conditions:
a. Outdoors and/or in Wet Ambient Conditions:
1) Mount within waterproof enclosures.
2) Rated for operation at 40 to 150 degrees F.
b. Conditioned Space:
1) Mount within dustproof enclosures.
2) Rated for operation at 32 to 120 degrees F.

4. Provisions for Serviceability:
a. Diagnostic LED's for power, communication, and processor.
b. Make all wiring connections to field removable, modular terminal strips, or to a termination card connected by a ribbon cable.

5. Memory: In the event of a power loss, maintain all BIOS and programming information for a minimum of 72 hours.

6. Power and Noise Immunity:
a. Maintain operation at 90 to 110 percent of nominal voltage rating.
b. Perform orderly shutdown below 80 percent of nominal voltage.
c. Operation protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 3 feet.

C. APPLICATION SPECIFIC CONTROLLERS
1. General:
 a. Not fully user programmable, microprocessor based controllers dedicated to control specific equipment.
 b. Customized for operation within the confines of equipment served.
 c. Communication with other network devices to be based on assigned protocol.
2. Communication:
 a. Controller to reside on a BACnet network using MS/TP Data Link/Physical layer protocol.
 b. Provide service communication port for connection to a portable operator's terminal or hand held device with compatible protocol.
3. Anticipated Environmental Ambient Conditions:
 a. Outdoors and/or in Wet Ambient Conditions:
 1) Mount within waterproof enclosures.
 2) Rated for operation at 40 to 150 degrees F.
 b. Conditioned Space:
 1) Mount within dustproof enclosures.
 2) Rated for operation at 32 to 120 degrees F.
4. Provisions for Serviceability:
 a. Diagnostic LEDs for power, communication, and processor.
 b. Make all wiring connections to field removable, modular terminal strips, or to a termination card connected by a ribbon cable.
5. Memory: In the event of a power loss, maintain all BIOS and programming information for a minimum of 72 hours.
6. Power and Noise Immunity:
 a. Maintain operation at 90 to 110 percent of nominal voltage rating.
 b. Perform orderly shutdown below 80 percent of nominal voltage.
 c. Operation protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 3 feet.

D. INPUT/OUTPUT INTERFACE
1. Hardwired inputs and outputs tie into the DDC system through building, custom application, or application specific controllers.
2. All Input/Output Points:
 a. Protect controller from damage resulting from any point short-circuiting or grounding and from voltage up to 24 volts of any duration.
 b. Provide universal type for building and custom application controllers where input or output is software designated as either binary or analog type with appropriate properties.
3. Binary Inputs:
 a. Allow monitoring of On/Off signals from remote devices.
 b. Provide wetting current of 12 mA minimum, compatible with commonly available control devices and protected against the effects of contact bounce and noise.
 c. Sense dry contact closure with power provided only by the controller.
4. Pulse Accumulation Input Objects: Conform to all requirements of binary input objects and accept up to 10 pulses per second.
5. Analog Inputs:
 a. Allow for monitoring of low voltage 0 to 10 VDC, 4 to 20 mA current, or resistance signals (thermistor, RTD).
 b. Compatible with and field configurable to commonly available sensing devices.
6. Binary Outputs:
 a. Used for On/Off operation or a pulsed low-voltage signal for pulse width modulation control.
b. Outputs provided with three position (On/Off/Auto) override switches.
c. Status lights for building and custom application controllers to be selectable for normally open or normally closed operation.

7. Analog Outputs:
 a. Monitoring signal provides a 0 to 10 VDC or a 4 to 20 mA output signal for end device control.
 b. Provide status lights and two position (AUTO/MANUAL) switch for building and custom application controllers with manually adjustable potentiometer for manual override on building and custom application controllers.
 c. Drift to not exceed 0.4 percent of range per year.

8. Tri State Outputs:
 a. Coordinate two binary outputs to control three point, floating type, electronic actuators without feedback.
 b. Limit the use of three point, floating devices to the following zone and terminal unit control applications:
 1) VAV terminal units.
 2) Duct mounted heating coils.
 3) Zone dampers.
 4) Radiation.
 c. Control algorithms run the zone actuator to one end of its stroke once every 24 hours for verification of operator tracking.

9. System Object Capacity:
 a. System size to be expandable to twice the number of input output objects required by providing additional controllers, including associated devices and wiring.
 b. Hardware additions or software revisions for the installed operator interfaces are not to be required for future, system expansions.

2.05 POWER SUPPLIES AND LINE FILTERING
 A. Power Supplies:
 1. Provide UL listed control transformers with Class 2 current limiting type or over-current protection in both primary and secondary circuits for Class 2 service as required by the NEC.
 2. Limit connected loads to 80 percent of rated capacity.
 3. Match DC power supply to current output and voltage requirements.
 4. Unit to be full wave rectifier type with output ripple of 5.0 mV maximum peak to peak.
 5. Regulation to be 1 percent combined line and load with 100 microsecond response time for 50 percent load changes.
 6. Provide over-voltage and over-current protection to withstand a 150 percent current overload for 3 seconds minimum without trip-out or failure.
 7. Operational Ambient Conditions: 32 to 120 degrees F.
 8. EM/RF meets FCC Class B and VDE 0871 for Class B and MIL-STD 810 for shock and vibration.
 9. Line voltage units UL recognized and CSA approved.
 B. Power Line Filtering:
 1. Provide external or internal transient voltage and surge suppression component for all workstations and controllers.
 2. Minimum surge protection attributes:
 a. Dielectric strength of 1000 volts minimum.
 b. Response time of 10 nanoseconds or less.
 c. Transverse mode noise attenuation of 65 dB or greater.
 d. Common mode noise attenuation of 150 dB or greater at 40 to 100 Hz.

2.06 LOCAL AREA NETWORK (LAN)
 A. Provide communication between control units over local area network (LAN).
 B. LAN Capacity: Not less than 60 stations or nodes.
C. Break in Communication Path: Alarm and automatically initiate LAN reconfiguration.

D. LAN Data Speed: Minimum 19.2 Kb.

E. Communication Techniques: Allow interface into network by multiple operation stations and by auto-answer/auto-dial modems. Support communication over telephone lines utilizing modems.

F. Transmission Median: Fiber optic or single pair of solid 24 gage twisted, shielded copper cable.

G. Network Support: Time for global point to be received by any station, shall be less than 3 seconds. Provide automatic reconfiguration if any station is added or lost. If transmission cable is cut, reconfigure two sections with no disruption to system's operation, without operator intervention.

2.07 SYSTEM SOFTWARE

A. Operating System:
 1. Concurrent, multi-tasking capability.
 b. Acceptable Operating Systems: __________.
 2. System Graphics:
 a. Allow up to 10 graphic screens, simultaneously displayed for comparison and monitoring of system status.
 b. Animation displayed by shifting image files based on object status.
 c. Provide method for operator with password to perform the following:
 1) Move between, change size, and change location of graphic displays.
 2) Modify on-line.
 3) Add, delete, or change dynamic objects consisting of:
 (a) Analog and binary values.
 (b) Dynamic text.
 (c) Static text.
 (d) Animation files.
 3. Custom Graphics Generation Package:
 a. Create, modify, and save graphic files and visio format graphics in PCX formats.
 b. HTML graphics to support web browser compatible formats.
 c. Capture or convert graphics from AutoCAD.
 4. Standard HVAC Graphics Library:
 a. HVAC Equipment:
 1) Chillers.
 2) Boilers.
 3) Air Handlers.
 4) Terminal HVAC Units.
 5) Fan Coil Units.
 b. Ancillary Equipment:
 1) Fans.
 2) Pumps.
 3) Coils.
 4) Valves.
 5) Piping.
 6) Dampers.
 7) Ductwork.

B. Workstation System Applications:
 1. Automatic System Database Save and Restore Functions:
 a. Current database copy of each Building Controller is automatically stored on hard disk.
 b. Automatic update occurs upon change in any system panel.
c. In the event of database loss in any system panel, the first workstation to detect the loss automatically restores the database for that panel unless disabled by the operator.

2. Manual System Database Save and Restore Functions by Operator with Password Clearance:
 a. Save database from any system panel.
 b. Clear a panel database.
 c. Initiate a download of a specified database to any system panel.

3. Software provided allows system configuration and future changes or additions by operators under proper password protection.

4. On-line Help:
 a. Context-sensitive system assists operator in operation and editing.
 b. Available for all applications.
 c. Relevant screen data provided for particular screen display.
 d. Additional help available via hypertext.

5. Security:
 a. Operator log-on requires user name and password to view, edit, add, or delete data.
 b. System security selectable for each operator.
 c. System supervisor sets passwords and security levels for all other operators.
 d. Operator passwords to restrict functions accessible to viewing and/or changing system applications, editor, and object.
 e. Automatic, operator log-off results from keyboard or mouse inactivity during user-adjustable, time period.
 f. All system security data stored in encrypted format.

6. System Diagnostics:
 a. Operations Automatically Monitored:
 1) Workstations.
 2) Printers.
 3) Modems.
 4) Network connections.
 5) Building management panels.
 6) Controllers.
 b. Device failure is annunciated to the operator.

7. Alarm Processing:
 a. All system objects are configurable to "alarm in" and "alarm out" of normal state.
 b. Configurable Objects:
 1) Alarm limits.
 2) Alarm limit differentials.
 3) States.
 4) Reactions for each object.

8. Alarm Messages:
 b. Recognizable Features:
 1) Source.
 2) Location.
 3) Nature.

9. Configurable Alarm Reactions by Workstation and Time of Day:
 a. Logging.
 b. Printing.
 c. Starting programs.
 d. Displaying messages.
 e. Dialing out to remote locations.
 f. Paging.
 g. Providing audible annunciation.
h. Displaying specific system graphics.

10. Custom Trend Logs:
 a. Definable for any data object in the system including interval, start time, and stop time.
 b. Trend Data:
 1) Sampled and stored on the building controller panel.
 2) Archivable on hard disk.
 3) Retrievable for use in reports, spreadsheets and standard database programs.
 4) Archival on LAN accessible storage media including hard disk, tape, Raid array drive, and virtual cloud environment.
 5) Protected and encrypted format to prevent manipulation, or editing of historical data and event logs.

11. Alarm and Event Log:
 a. View all system alarms and change of states from any system location.
 b. Events listed chronologically.
 c. Operator with proper security acknowledges and clears alarms.
 d. Alarms not cleared by operator are archived to the workstation hard disk.

12. Object, Property Status and Control:
 a. Provide a method to view, edit if applicable, the status of any object and property in the system.
 b. Status Available by the Following Methods:
 1) Menu.
 2) Graphics.
 3) Custom Programs.

13. Reports and Logs:
 a. Reporting Package:
 1) Allows operator to select, modify, or create reports.
 2) Definable as to data content, format, interval, and date.
 3) Archivable to hard disk.
 b. Real-time logs available by type or status such as alarm, lockout, normal, etc.
 c. Stored on hard disk and readily accessible by standard software applications, including spreadsheets and word processing.
 d. Set to be printed on operator command or specific time(s).

14. Reports:
 a. Standard:
 1) Objects with current values.
 2) Current alarms not locked out.
 3) Disabled and overridden objects, points and SNVTs.
 4) Objects in manual or automatic alarm lockout.
 5) Objects in alarm lockout currently in alarm.
 6) Logs:
 (a) Alarm History.
 (b) System messages.
 (c) System events.
 (d) Trends.
 b. Custom:
 1) Daily.
 2) Weekly.
 3) Monthly.
 4) Annual.
 5) Time and date stamped.
 6) Title.
 7) Facility name.
 c. Tenant Override:
1) Monthly report showing total, requested, after-hours HVAC and lighting services on a daily basis for each tenant.
2) Annual report showing override usage on a monthly basis.

d. Electrical, Fuel, and Weather:

1) Electrical Meter(s):
 (a) Monthly showing daily electrical consumption and peak electrical demand with time and date stamp for each meter.
 (b) Annual summary showing monthly electrical consumption and peak demand with time and date stamp for each meter.

2) Fuel Meter(s):
 (a) Monthly showing daily natural gas consumption for each meter.
 (b) Annual summary showing monthly consumption for each meter.

3) Weather:
 (a) Monthly showing minimum, maximum, average outdoor air temperature and heating/cooling degree-days for the month.

e. Daily Operating Condition of Chiller(s) Based on ASHRAE Std 147:

1) Chilled water inlet and outlet temperature.
2) Chilled water flow.
3) Chilled water inlet and outlet pressure.
4) Evaporator refrigerant pressure and temperature.
5) Condenser refrigerant pressure and temperature.
6) Condenser refrigerant pressure and liquid temperature.
7) Refrigerant levels.
8) Oil pressure and temperature.
9) Oil level.
10) Compressor refrigerant discharge temperature.
11) Refrigerant suction temperature.
12) Addition of refrigerant.
13) Addition of oil.
14) Motor amperes per phase.
15) Motor volts per phase.
16) Ambient temperature (dry-bulb and wet-bulb).
17) Date and time logged.

C. Workstation Applications Editors:

1. Provide editing software for each system application at PC workstation.
2. Downloaded application is executed at controller panel.
3. Full screen editor for each application allows operator to view and change:
 a. Configuration.
 b. Name.
 c. Control parameters.
 d. Set-points.
4. Scheduling:
 a. Monthly calendar indicates schedules, holidays, and exceptions.
 b. Allows several related objects to be scheduled and copied to other objects or dates.
 c. Start and stop times adjustable from master schedule.
5. Custom Application Programming:
 a. Create, modify, debug, edit, compile, and download custom application programming during operation and without disruption of all other system applications.
 b. Programming Features:
 1) English oriented language, based on BASIC, FORTRAN, C, or PASCAL syntax allowing for free form programming.
 2) Alternative language graphically based using appropriate function blocks suitable for all required functions and amenable to customizing or compounding.
3) Insert, add, modify, and delete custom programming code that incorporates word processing features such as cut/paste and find/replace.

4) Allows the development of independently, executing, program modules designed to enable and disable other modules.

5) Debugging/simulation capability that displays intermediate values and/or results including syntax/execution error messages.

6) Support for conditional statements (IF/THEN/ELSE/ELSE-F) using compound Boolean (AND, OR, and NOT) and/or relations (EQUAL, LESS THAN, GREATER THAN, NOT EQUAL) comparisons.

7) Support for floating-point arithmetic utilizing plus, minus, divide, times, square root operators; including absolute value; minimum/maximum value from a list of values for mathematical functions.

8) Language consisting of resettable, predefined, variables representing time of day, day of the week, month of the year, date; and elapsed time in seconds, minutes, hours, and days where the variable values can be used in IF/THEN comparisons, calculations, programming statement logic, etc.

9) Language having predefined variables representing status and results of the system software enables, disables, and changes the set points of the controller software.

2.08 CONTROLLER SOFTWARE

A. All applications reside and operate in the system controllers and editing of all applications occurs at the operator workstation.

B. System Security:
 1. User access secured via user passwords and user names.
 2. Passwords restrict user to the objects, applications, and system functions as assigned by the system manager.
 3. User Log On/Log Off attempts are recorded.
 4. Automatic Log Off occurs following the last keystroke after a user defined delay time.

C. Object or Object Group Scheduling:
 1. Weekly Schedules Based on Separate, Daily Schedules:
 a. Include start, stop, optimal stop, and night economizer.
 b. 10 events maximum per schedule.
 c. Start/stop times adjustable for each group object.
 2. Exception Schedules:
 a. Based on any day of the year.
 b. Defined up to one year in advance.
 c. Automatically discarded and replaced with standard schedule for that day of the week upon execution.
 3. Holiday or Special Schedules:
 a. Capability to define up to 99 schedules.
 b. Repeated annually.
 c. Length of each period is operator defined.

D. Provide standard application for equipment coordination and grouping based on function and location to be used for scheduling and other applications.

E. Alarms:
 1. Binary object is set to alarm based on the operator specified state.
 2. Analog object to have high/low alarm limits.
 3. All alarming is capable of being automatically and manually disabled.
 4. Alarm Reporting:
 a. Operator determines action to be taken for alarm event.
 b. Alarms to be routed to appropriate workstation.
 c. Reporting Options:
 1) Start programs.
2) Print.
3) Logged.
4) Custom messaging.
5) Graphical displays.
6) Dial out to workstation receivers via system protocol.

F. Maintenance Management: System monitors equipment status and generates maintenance messages based upon user-designated run-time limits.

G. Sequencing: Application software based upon specified sequences of operation in Section 23 0993.

H. PID Control Characteristics:
 1. Direct or reverse action.
 2. Anti-windup.
 3. Calculated, time-varying, analog value, positions an output or stages a series of outputs.

I. Staggered Start Application:
 1. Prevents all controlled equipment from simultaneously restarting after power outage.
 2. Order of equipment startup is user selectable.

J. Energy Calculations:
 1. Accumulated instantaneous power or flow rates are converted to energy use data.
 2. Algorithm calculates a rolling average and allows window of time to be user specified in minute intervals.
 3. Algorithm calculates a fixed window average with a digital input signal from a utility meter defining the start of the window period that in turn synchronizes the fixed-window average with that used by the power company.

K. Anti-Short Cycling:
 1. All binary output objects protected from short-cycling.
 2. Allows minimum on-time and off-time to be selected.

L. On-Off Control with Differential:
 1. Algorithm allows binary output to be cycled based on a controlled variable and set-point.
 2. Algorithm to be direct-acting or reverse-acting incorporating an adjustable differential.

M. Run-Time Totalization:
 1. Totalize run-times for all binary input objects.
 2. Provides operator with capability to assign high run-time alarm.

2.09 HVAC CONTROL PROGRAMS

A. General:
 1. Support Inch-pounds and SI (metric) units of measurement.
 2. Identify each HVAC Control system.

B. Optimal Run Time:
 1. Control start-up and shutdown times of HVAC equipment for both heating and cooling.
 2. Base on occupancy schedules, outside air temperature, seasonal requirements, and interior room mass temperature.
 3. Start-up systems by using outside air temperature, room mass temperatures, and adaptive model prediction for how long building takes to warm up or cool down under different conditions.
 4. Use outside air temperature to determine early shut down with ventilation override.
 5. Operator commands:
 a. Define term schedule.
 b. Add/delete fan status point.
 c. Add/delete outside air temperature point.
 d. Define heating/cooling parameters.
 e. Lock/unlock program.
6. Control Summary:
 a. HVAC Control system begin/end status.
 b. Heating/cooling mode status.
 c. Start/Stop times.
 d. Occupancy and vacancy times.
 e. Optimal run time system heating/cooling mode parameters.

7. HVAC point summary:
 a. Control system identifier and status.
 b. Point ID and status.
 c. Outside air temperature point ID and status.
 d. Period start.

C. Supply Air Reset:
 1. Monitor heating and cooling loads in building spaces, terminal reheat systems, both hot
dock and cold dock temperatures on dual duct and multizone systems, single zone unit
discharge temperatures.
 2. Adjust discharge temperatures to most energy efficient levels satisfying measured load by:
 a. Raising cooling temperatures to highest possible value.
 b. Reducing heating temperatures to lowest possible level.
 3. Operator commands:
 a. Add/delete fan status point.
 b. Lock/unlock program.
 c. Request HVAC point summary.
 d. Add/Delete discharge controller point.
 e. Define discharge controller parameters.
 f. Add/delete air flow rate.
 g. Define space load and load parameters.
 h. Request space load summary.
 4. Control summary:
 a. HVAC control system status (begin/end).
 b. Supply air reset system status.
 c. Heating and cooling loop.
 d. High/low limits.
 e. Deadband.
 f. Response timer.
 g. Reset times.
 5. Space load summary:
 a. HVAC system status.
 b. Heating/cooling loop status.
 c. Space load point ID.
 d. Current space load point value.
 e. Control heat/cool limited.
 f. Gain factor.
 g. Calculated reset values.
 h. Fan status point ID and status.
 i. Control discharge temperature point ID and status.
 j. Space load point ID and status.
 k. Air flow rate point ID and status.

2.10 CHILLER CONTROL PROGRAMS
 A. Control function of condenser water reset, chilled water reset, and chiller sequencing. Support
 inch-pounds and SI (metric) units of measurement.
B. Condenser Water Reset: Automatically reset controlled condenser water temperature using measured outside wet bulb temperature and load being handled.

C. Chilled Water Reset: Automatically reset controlled chilled water temperature satisfying cooling coil requiring greatest cooling.

D. Chiller Sequencing: Determine which combination of chillers will most efficiently satisfy chilled water load, by cycling chillers, based on comparing load to switchover limits defined for each chiller.

PART 3 EXECUTION

3.01 INSTALLERS
 A. Installer List:
 1. Trane USA; www.trane.com

3.02 EXAMINATION
 A. Verify existing conditions before starting work.
 B. Verify that conditioned power supply is available to the control units and to the operator work station. Verify that field end devices, wiring, and pneumatic tubing is installed prior to installation proceeding.

3.03 INSTALLATION
 A. Install control units and other hardware in position on permanent walls where not subject to excessive vibration.
 B. Install software in control units and in operator work station. Implement all features of programs to specified requirements and appropriate to sequence of operation. Refer to Section 23 0993.
 C. Provide conduit and electrical wiring in accordance with Section 26 2717. Electrical material and installation shall be in accordance with appropriate requirements of Division 26.

3.04 MANUFACTURER’S FIELD SERVICES
 A. Start and commission systems. Allow sufficient time for start-up and commissioning prior to placing control systems in permanent operation.
 B. Provide service engineer to instruct Owner’s representative in operation of systems plant and equipment for 3 day period.

3.05 DEMONSTRATION AND INSTRUCTIONS
 A. Demonstrate complete and operating system to Owner.

3.06 MAINTENANCE
 A. See Section 01 7000 - Execution and Closeout Requirements, for additional requirements relating to maintenance service.
 B. Provide service and maintenance of energy management and control systems for one years from Date of Substantial Completion.
 C. Provide two complete inspections, one in each season, to inspect, calibrate, and adjust controls as required, and submit written reports.

END OF SECTION 23 0923