SECTION 23 0593
TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 GENERAL

1.01 SECTION INCLUDES
 A. Testing, adjustment, and balancing of air systems.
 B. Testing, adjustment, and balancing of hydronic, steam, and refrigerating systems.
 C. Measurement of final operating condition of HVAC systems.

1.02 RELATED REQUIREMENTS
 A. Section 01 2100 - Allowances: Inspection and testing allowances.
 B. Section 01 4000 - Quality Requirements: Employment of testing agency and payment for services.
 C. Section 01 9113 - General Commissioning Requirements: Commissioning requirements that apply to all types of work.
 D. Section 23 0800 - Commissioning of HVAC.

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS
 A. See Section 01 3000 - Administrative Requirements, for submittal procedures.
 B. Installer Qualifications: Submit name of adjusting and balancing agency and TAB supervisor for approval within 30 days after award of Contract.
 C. TAB Plan: Submit a written plan indicating the testing, adjusting, and balancing standard to be followed and the specific approach for each system and component.
 1. Submit to Architect.
 2. Submit to the Commissioning Authority.
 3. Submit six weeks prior to starting the testing, adjusting, and balancing work.
 4. Include at least the following in the plan:
 a. Preface: An explanation of the intended use of the control system.
 b. List of all air flow, water flow, sound level, system capacity and efficiency measurements to be performed and a description of specific test procedures, parameters, formulas to be used.
 c. Copy of field checkout sheets and logs to be used, listing each piece of equipment to be tested, adjusted and balanced with the data cells to be gathered for each.
 d. Identification and types of measurement instruments to be used and their most recent calibration date.
 e. Discussion of what notations and markings will be made on the duct and piping drawings during the process.
 f. Final test report forms to be used.
 g. Detailed step-by-step procedures for TAB work for each system and issue, including:
 1) Terminal flow calibration (for each terminal type).
 2) Diffuser proportioning.
 3) Branch/submain proportioning.
 4) Total flow calculations.
 5) Rechecking.
6) Diversity issues.

h. Details of how TOTAL flow will be determined; for example:
 1) Air: Sum of terminal flows via control system calibrated readings or via hood
 readings of all terminals, supply (SA) and return air (RA) pitot traverse, SA or RA
 flow stations.
 2) Water: Pump curves, circuit setter, flow station, ultrasonic, etc.

i. Specific procedures that will ensure that both air and water side are operating at the
 lowest possible pressures and methods to verify this.

j. Confirmation of understanding of the outside air ventilation criteria under all
 conditions.

k. Method of verifying and setting minimum outside air flow rate will be verified and set
 and for what level (total building, zone, etc.).

l. Method of checking building static and exhaust fan and/or relief damper capacity.

m. Methods for making coil or other system plant capacity measurements, if specified.

n. Time schedule for TAB work to be done in phases (by floor, etc.).

o. Description of TAB work for areas to be built out later, if any.

p. Time schedule for deferred or seasonal TAB work, if specified.

q. False loading of systems to complete TAB work, if specified.

r. Exhaust fan balancing and capacity verifications, including any required room
 pressure differentials.

s. Interstitial cavity differential pressure measurements and calculations, if specified.

t. Procedures for field technician logs of discrepancies, deficient or uncompleted work
 by others, contract interpretation requests and lists of completed tests (scope and
 frequency).

u. Procedures for formal progress reports, including scope and frequency.

v. Procedures for formal deficiency reports, including scope, frequency and distribution.

D. Field Logs: Submit at least twice a week to the Commissioning Authority.

E. Control System Coordination Reports: Communicate in writing to the controls installer all
 setpoint and parameter changes made or problems and discrepancies identified during TAB
 that affect, or could affect, the control system setup and operation.

F. Progress Reports.

G. Final Report: Indicate deficiencies in systems that would prevent proper testing, adjusting, and
 balancing of systems and equipment to achieve specified performance.
 1. Revise TAB plan to reflect actual procedures and submit as part of final report.
 2. Submit draft copies of report for review prior to final acceptance of Project. Provide final
 copies for Architect and for inclusion in operating and maintenance manuals.
 3. Include actual instrument list, with manufacturer name, serial number, and date of
 calibration.
 4. Form of Test Reports: Where the TAB standard being followed recommends a report
 format use that; otherwise, follow ASHRAE Std 111.
 5. Units of Measure: Report data in both I-P (inch-pound) and SI (metric) units.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

3.01 GENERAL REQUIREMENTS

A. Perform total system balance in accordance with one of the following:
 1. AABC MN-1, AABC National Standards for Total System Balance.
 2. ASHRAE Std 111, Practices for Measurement, Testing, Adjusting and Balancing of
 4. SMACNA (TAB).
 5. Maintain at least one copy of the standard to be used at project site at all times.
B. Begin work after completion of systems to be tested, adjusted, or balanced and complete work prior to Substantial Completion of the project.

C. Where HVAC systems and/or components interface with life safety systems, including fire and smoke detection, alarm, and control, coordinate scheduling and testing and inspection procedures with the authorities having jurisdiction.

D. TAB Agency Qualifications:
 1. Company specializing in the testing, adjusting, and balancing of systems specified in this section.
 2. Having minimum of three years documented experience.
 3. Certified by one of the following:

E. TAB Supervisor and Technician Qualifications: Certified by same organization as TAB agency.

3.02 EXAMINATION

A. Verify that systems are complete and operable before commencing work. Ensure the following conditions:
 1. Systems are started and operating in a safe and normal condition.
 2. Temperature control systems are installed complete and operable.
 3. Proper thermal overload protection is in place for electrical equipment.
 4. Final filters are clean and in place. If required, install temporary media in addition to final filters.
 5. Duct systems are clean of debris.
 6. Fans are rotating correctly.
 7. Fire and volume dampers are in place and open.
 8. Air coil fins are cleaned and combed.
 9. Access doors are closed and duct end caps are in place.
 10. Air outlets are installed and connected.
 11. Duct system leakage is minimized.
 12. Hydronic systems are flushed, filled, and vented.
 13. Pumps are rotating correctly.
 14. Proper strainer baskets are clean and in place.
 15. Service and balance valves are open.

B. Submit field reports. Report defects and deficiencies that will or could prevent proper system balance.

C. Beginning of work means acceptance of existing conditions.

3.03 PREPARATION

A. Hold a pre-balancing meeting at least one week prior to starting TAB work.
 1. Require attendance by all installers whose work will be tested, adjusted, or balanced.

B. Provide instruments required for testing, adjusting, and balancing operations. Make instruments available to Architect to facilitate spot checks during testing.

C. Provide additional balancing devices as required.

3.04 ADJUSTMENT TOLERANCES

A. Air Handling Systems: Adjust to within plus or minus 5 percent of design for supply systems and plus or minus 10 percent of design for return and exhaust systems.

B. Air Outlets and Inlets: Adjust total to within plus 10 percent and minus 5 percent of design to space. Adjust outlets and inlets in space to within plus or minus 10 percent of design.

C. Hydronic Systems: Adjust to within plus or minus 10 percent of design.
3.05 RECORDING AND ADJUSTING
A. Field Logs: Maintain written logs including:
 1. Running log of events and issues.
 2. Discrepancies, deficient or uncompleted work by others.
 4. Lists of completed tests.
B. Ensure recorded data represents actual measured or observed conditions.
C. Permanently mark settings of valves, dampers, and other adjustment devices allowing settings to be restored. Set and lock memory stops.
D. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.
E. Leave systems in proper working order, replacing belt guards, closing access doors, closing doors to electrical switch boxes, and restoring thermostats to specified settings.

3.06 AIR SYSTEM PROCEDURE
A. Adjust air handling and distribution systems to provide required or design supply, return, and exhaust air quantities at site altitude.
B. Make air quantity measurements in ducts by Pitot tube traverse of entire cross sectional area of duct.
C. Measure air quantities at air inlets and outlets.
D. Use volume control devices to regulate air quantities only to extend that adjustments do not create objectionable air motion or sound levels. Effect volume control by duct internal devices such as dampers and splitters.
E. Vary total system air quantities by adjustment of fan speeds. Provide drive changes required. Vary branch air quantities by damper regulation.
F. Provide system schematic with required and actual air quantities recorded at each outlet or inlet.
G. Measure static air pressure conditions on air supply units, including filter and coil pressure drops, and total pressure across the fan. Make allowances for 50 percent loading of filters.
H. Adjust outside air automatic dampers, outside air, return air, and exhaust dampers for design conditions.
I. Where modulating dampers are provided, take measurements and balance at extreme conditions. Balance variable volume systems at maximum air flow rate, full cooling, and at minimum air flow rate, full heating.
J. Measure building static pressure and adjust supply, return, and exhaust air systems to provide required relationship between each to maintain approximately 0.05 inches positive static pressure near the building entries.
K. For variable air volume system powered units set volume controller to air flow setting indicated. Confirm connections properly made and confirm proper operation for automatic variable air volume temperature control.
L. On fan powered VAV boxes, adjust air flow switches for proper operation.

3.07 WATER SYSTEM PROCEDURE

3.08 SCOPE
A. Test, adjust, and balance the following:
 1. Fire Pumps.
 2. Sprinkler Air Compressor.
 5. Steam Condensate Pumps.
7. HVAC Pumps.
8. Air Cooled Water Chillers.
10. Air Cooled Refrigerant Condensers.
11. Packaged Roof Top Heating/Cooling Units.
12. Air Handling Units.
14. Air Terminal Units.
15. Air Inlets and Outlets.

3.09 MINIMUM DATA TO BE REPORTED

A. Electric Motors:
 1. Manufacturer.
 2. Model/Frame.
 3. HP/BHP.
 4. Phase, voltage, amperage; nameplate, actual, no load.
 5. RPM.
 7. Starter size, rating, heater elements.

B. Pumps:
 1. Identification/number.
 2. Manufacturer.
 3. Size/model.
 4. Impeller.
 5. Service.
 6. Design flow rate, pressure drop, BHP.
 7. Actual flow rate, pressure drop, BHP.
 8. Discharge pressure.
 10. Total operating head pressure.
 11. Shut off, discharge and suction pressures.
 12. Shut off, total head pressure.

C. Combustion Equipment:
 1. Boiler manufacturer.
 2. Model number.
 3. Serial number.
 4. Firing rate.
 5. Overfire draft.
 6. Gas pressure at meter outlet.
 7. Gas flow rate.
 8. Heat input.
 11. Percent carbon dioxide (CO2).
 12. Percent oxygen (O2).
 13. Flue gas temperature at outlet.
 15. Net stack temperature.
 17. Heat output.

D. Air Cooled Condensers:
 1. Identification/number.
 2. Location.
3. Manufacturer.
4. Model number.
5. Serial number.
6. Entering DB air temperature, design and actual.
7. Leaving DB air temperature, design and actual.
8. Number of compressors.

E. Chillers:
1. Identification/number.
2. Manufacturer.
3. Capacity.
4. Model number.
5. Serial number.
6. Evaporator entering water temperature, design and actual.
7. Evaporator leaving water temperature, design and actual.
8. Evaporator pressure drop, design and actual.
9. Evaporator water flow rate, design and actual.
10. Condenser entering water temperature, design and actual.
11. Condenser pressure drop, design and actual.
12. Condenser water flow rate, design and actual.

F. Cooling Tower:
1. Tower identification/number.
2. Manufacturer.
3. Model number.
4. Serial number.
5. Rated capacity.
6. Entering air WB temperature, specified and actual.
7. Leaving air WB temperature, specified and actual.
8. Ambient air DB temperature.
9. Condenser water entering temperature.
10. Condenser water leaving temperature.
11. Condenser water flow rate.
12. Fan RPM.

G. Heat Exchangers:
1. Identification/number.
2. Location.
4. Manufacturer.
5. Model number.
7. Steam pressure, design and actual.
8. Primary water entering temperature, design and actual.
9. Primary water leaving temperature, design and actual.
10. Primary water flow, design and actual.
11. Primary water pressure drop, design and actual.
12. Secondary water leaving temperature, design and actual.
13. Secondary water flow, design and actual.
14. Secondary water pressure drop, design and actual.

H. Air Moving Equipment:
1. Location.
2. Manufacturer.
3. Model number.
4. Serial number.
5. Arrangement/Class/Discharge.
6. Air flow, specified and actual.
7. Return air flow, specified and actual.
8. Outside air flow, specified and actual.
9. Total static pressure (total external), specified and actual.
10. Inlet pressure.
11. Discharge pressure.
13. Number of Belts/Make/Size.
14. Fan RPM.

I. Return Air/Outside Air:
 1. Identification/location.
 2. Design air flow.
 3. Actual air flow.
 4. Design return air flow.
 5. Actual return air flow.
 6. Design outside air flow.
 7. Actual outside air flow.
 8. Return air temperature.
 10. Required mixed air temperature.
 11. Actual mixed air temperature.
 12. Design outside/return air ratio.
 13. Actual outside/return air ratio.

J. Exhaust Fans:
 1. Location.
 2. Manufacturer.
 3. Model number.
 4. Serial number.
 5. Air flow, specified and actual.
 6. Total static pressure (total external), specified and actual.
 7. Inlet pressure.
 8. Discharge pressure.
 10. Number of Belts/Make/Size.
 11. Fan RPM.

K. Air Monitoring Stations:
 1. Identification/location.
 2. System.
 3. Size.
 4. Area.
 5. Design velocity.
 6. Design air flow.
 7. Test velocity.
 8. Test air flow.

L. Flow Measuring Stations:
 1. Identification/number.
 2. Location.
 3. Size.
 4. Manufacturer.
 5. Model number.
 7. Design Flow rate.
 8. Design pressure drop.
10. Actual/final flow rate.
11. Station calibrated setting.

M. Terminal Unit Data:
 1. Manufacturer.
 2. Type, constant, variable, single, dual duct.
 3. Identification/number.
 4. Location.
 5. Model number.
 7. Minimum static pressure.
 8. Minimum design air flow.
 9. Maximum design air flow.
 10. Maximum actual air flow.
 11. Inlet static pressure.

END OF SECTION 23 0593