SECTION 23 0513
COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 GENERAL

1.01 SECTION INCLUDES

A. General construction and requirements.
B. Applications.
C. Single phase electric motors.
D. Three phase electric motors.
E. Electronically Commutated Motors (ECM).

1.02 REFERENCE STANDARDS

A. ABMA STD 9 - Load Ratings and Fatigue Life for Ball Bearings; 2015.
C. NEMA MG 1 - Motors and Generators; 2014.
D. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.03 SUBMITTALS

A. See Section 01 3000 - Administrative Requirements for submittal procedures.
B. Product Data: Provide wiring diagrams with electrical characteristics and connection requirements.
C. Manufacturer's Installation Instructions: Indicate setting, mechanical connections, lubrication, and wiring instructions.
D. Operation Data: Include instructions for safe operating procedures.
E. Maintenance Data: Include assembly drawings, bearing data including replacement sizes, and lubrication instructions.

1.04 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacture of electric motors for HVAC use, and their accessories, with minimum three years documented product development, testing, and manufacturing experience.
B. Conform to NFPA 70.
C. Products Requiring Electrical Connection: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

1.05 DELIVERY, STORAGE, AND HANDLING

A. Protect motors stored on site from weather and moisture by maintaining factory covers and suitable weather-proof covering. For extended outdoor storage, remove motors from equipment and store separately.

1.06 WARRANTY

A. See Section 01 7800 - Closeout Submittals for additional warranty requirements.
B. Provide five year manufacturer warranty for motors larger than 20 horsepower.

PART 2 PRODUCTS

2.01 MANUFACTURERS

B. Regal-Beloit Corporation (Century); ______: www.centuryelectricmotor.com.
C. Toshiba.
2.02 GENERAL CONSTRUCTION AND REQUIREMENTS

A. Electrical Service: Refer to Section 26 2717 for required electrical characteristics.
B. Electrical Service:
C. Nominal Efficiency:
D. Construction:
 1. Open TEFC inverter rated type except where specifically noted otherwise.
 2. Design for continuous operation in 104 degrees F environment.
 3. Design for temperature rise in accordance with NEMA MG 1 limits for insulation class, service factor, and motor enclosure type.
E. Provide Aegis grounding ring on all motors.
F. Visible Nameplate: Indicating motor horsepower, voltage, phase, cycles, RPM, full load amps, locked rotor amps, frame size, manufacturer's name and model number, service factor, power factor, efficiency.
G. Wiring Terminations:
 1. Provide terminal lugs to match branch circuit conductor quantities, sizes, and materials indicated. Enclose terminal lugs in terminal box sized to NFPA 70, threaded for conduit.
 2. For fractional horsepower motors where connection is made directly, provide threaded conduit connection in end frame.

2.03 APPLICATIONS

A. Exception: Motors less than 250 watts, for intermittent service may be the equipment manufacturer's standard and need not conform to these specifications.
B. Single phase motors for shaft mounted fans, oil burners, and centrifugal pumps: Split phase type.
C. Single phase motors for shaft mounted fans or blowers: Permanent split capacitor type.
D. Single phase motors for fans, pumps, blowers, and air compressors: Capacitor start type.
E. Single phase motors for fans, blowers, and pumps: Capacitor start, capacitor run type.
F. Motors located in exterior locations, wet air streams downstream of sprayed coil dehumidifiers, draw through cooling towers, air cooled condensers, humidifiers, direct drive axial fans, roll filters, explosion proof environments, and dust collection systems: Totally enclosed type.
G. Motors located in outdoors, in wet air streams downstream of sprayed coil dehumidifiers, in draw through cooling towers, and in humidifiers: Totally enclosed weatherproof epoxy-treated type.
H. Motors located outdoors and in draw through cooling towers: Totally enclosed weatherproof epoxy-sealed type.

2.04 SINGLE PHASE POWER - SPLIT PHASE MOTORS

A. Starting Torque: Less than 150 percent of full load torque.
B. Starting Current: Up to seven times full load current.
C. Breakdown Torque: Approximately 200 percent of full load torque.
D. Drip-proof Enclosure: Class A (50 degrees C temperature rise) insulation, NEMA Service Factor, prelubricated sleeve or ball bearings.
E. Enclosed Motors: Class A (50 degrees C temperature rise) insulation, 1.0 Service Factor, prelubricated ball bearings.

2.05 SINGLE PHASE POWER - PERMANENT-SPLIT CAPACITOR MOTORS

A. Starting Torque: Exceeding one fourth of full load torque.
B. Starting Current: Up to six times full load current.
C. Multiple Speed: Through tapped windings.
D. Open Drip-proof or Enclosed Air Over Enclosure: Class A (50 degrees C temperature rise) insulation, minimum 1.0 Service Factor, prelubricated sleeve or ball bearings, automatic reset overload protector.

2.06 SINGLE PHASE POWER - CAPACITOR START MOTORS
A. Starting Torque: Three times full load torque.
B. Starting Current: Less than five times full load current.
C. Pull-up Torque: Up to 350 percent of full load torque.
D. Breakdown Torque: Approximately 250 percent of full load torque.
E. Motors: Capacitor in series with starting winding; provide capacitor-start/capacitor-run motors with two capacitors in parallel with run capacitor remaining in circuit at operating speeds.
F. Drip-proof Enclosure: Class A (50 degrees C temperature rise) insulation, NEMA Service Factor, prelubricated sleeve bearings.
G. Enclosed Motors: Class A (50 degrees C temperature rise) insulation, 1.0 Service Factor, prelubricated ball bearings.

2.07 THREE PHASE POWER - SQUIRREL CAGE MOTORS
A. Starting Torque: Between 1 and 1-1/2 times full load torque.
B. Starting Current: Six times full load current.
C. Power Output, Locked Rotor Torque, Breakdown or Pull Out Torque: NEMA Design B characteristics.
E. Insulation System: NEMA Class B or better.
F. Testing Procedure: In accordance with IEEE 112. Load test motors to determine free from electrical or mechanical defects in compliance with performance data.
G. Motor Frames: NEMA Standard T-Frames of steel, aluminum, or cast iron with end brackets of cast iron or aluminum with steel inserts.
H. Thermistor System (Motor Frame Sizes 254T and Larger): Three PTC thermistors embedded in motor windings and epoxy encapsulated solid state control relay for wiring into motor starter; refer to Section 26 2913.
I. Bearings: Grease lubricated anti-friction ball bearings with housings equipped with plugged provision for relubrication, rated for minimum ABMA STD 9, L-10 life of 20,000 hours. Calculate bearing load with NEMA minimum V-belt pulley with belt center line at end of NEMA standard shaft extension. Stamp bearing sizes on nameplate.
J. Sound Power Levels: To NEMA MG 1.
K. Part Winding Start Where Indicated: Use part of winding to reduce locked rotor starting current to approximately 60 percent of full winding locked rotor current while providing approximately 50 percent of full winding locked rotor torque.
L. Weatherproof Epoxy Sealed Motors: Epoxy seal windings using vacuum and pressure with rotor and starter surfaces protected with epoxy enamel; bearings double shielded with waterproof non-washing grease.
M. Nominal Efficiency: As scheduled at full load and rated voltage when tested in accordance with IEEE 112.
N. Nominal Power Factor: As scheduled at full load and rated voltage when tested in accordance with IEEE 112.

2.08 ELECTRONICALLY COMMUTATED MOTORS (ECM)
A. Manufacturers:
2. Wilo. www.wilo-usa.com
3. Substitutions: See Section 01 6000 - Product Requirements.

B. Applications:
 1. Commercial:
 a. Roof Top Unit:
 1) Operating Mode: Constant speed.
 2) Input: Motor manufacturer to coordinate control requirements with the control board of the roof top unit and/or specified sequence of operation.
 3) Shaft Extension: Single.
 4) RPM: 300 through 1200.
 b. DX Fan Coil Unit:
 1) Operating Mode: Constant cfm.
 2) Input: Motor manufacturer to coordinate control requirements with the control board of the DX fan coil unit and/or specified sequence of operation.
 3) Shaft Extension: Single.
 4) Options: Remote mount control/User-Interface.
 5) RPM: 300 through 1250.
 c. Hydronic Fan Coil Unit:
 1) Operating Mode: Constant cfm.
 2) Input: Motor manufacturer to coordinate control requirements with the control board of the fan coil unit and/or specified sequence of operation.
 3) Shaft Extension: Single.
 4) Options: User-interface.
 5) RPM: 300 through 1250.
 d. Power Roof Ventilator (PRV):
 1) Operating Mode: Constant cfm.
 2) Input: Motor manufacturer to coordinate control requirements with the control board of the PRV and/or specified sequence of operation.
 3) Shaft Extension: Single.
 4) Options: Remote mount control.
 e. Fan Filter Unit:
 1) Operating Mode: Constant cfm.
 2) Input: Motor manufacturer to coordinate control requirements with the control board of the fan filter unit and/or specified sequence of operation.
 3) Shaft Extension: Single.
 4) Options: Remote mount control.
 f. Hydronic Pump:
 1) Operating Mode: Constant speed.
 2) Input: Motor manufacturer to coordinate control requirements with the control board of the hydronic pump and/or specified sequence of operation.
 3) Flange Configuration: "C".
 g. Hydronic Booster Pump:
 1) Operating Mode: Constant speed.
 2) Input: Motor manufacturer to coordinate control requirements with the control board of the hydronic pump and/or specified sequence of operation.
 3) Flange Configuration: "C".
 2. Residential/Commercial:
 a. Geothermal Heat Pumps:
 1) Operating Mode: Constant cfm.
 2) Input: Motor manufacturer to coordinate control requirements with the control board of the geothermal heat pump and/or specified sequence of operation.
3.01 INSTALLATION
A. Install in accordance with manufacturer's instructions.
B. Install securely on firm foundation. Mount ball bearing motors with shaft in any position.
C. Check line voltage and phase and ensure agreement with nameplate.

3.02 SCHEDULE
A. NEMA Open Motor Service Factors.
 1. 1/6-1/3 hp:
 a. 1800 rpm: 1.35.
 b. 1200 rpm: 1.35.
 c. 900 rpm: 1.35.
 2. 1/2 hp:
 a. 1800 rpm: 1.25.
 b. 1200 rpm: 1.25.
 c. 900 rpm: 1.15.
 3. 3/4 hp:
 a. 1800 rpm: 1.25.
 b. 1200 rpm: 1.15.
 c. 900 rpm: 1.15.
 4. 1 hp:
 a. 1800 rpm: 1.15.
 b. 1200 rpm: 1.15.
 c. 900 rpm: 1.15.
 5. 1.5-150 hp:
 a. 1800 rpm: 1.15.
 b. 1200 rpm: 1.15.
 c. 900 rpm: 1.15.
B. Three Phase - Energy Efficient, Open Drip-Proof Performance:
 1. 1200 rpm.
 a. 1 hp:
 1) NEMA Frame: 145T.
 2) Minimum Percent Power Factor: 72.
 3) Minimum Percent Efficiency: 81.
 b. 1-1/2 hp:
 1) NEMA Frame: 182T.
 2) Minimum Percent Power Factor: 73.
 3) Minimum Percent Efficiency: 83.
 c. 2 hp:
 1) NEMA Frame: 184T.
 2) Minimum Percent Power Factor: 75.
 3) Minimum Percent Efficiency: 85.
 d. 3 hp:
 1) NEMA Frame: 213T.
 2) Minimum Percent Power Factor: 60.
 3) Minimum Percent Efficiency: 86.
 e. 5 hp:
 1) NEMA Frame: 215T.
 3) Minimum Percent Efficiency: 87.
 f. 7-1/2 hp:
 1) NEMA Frame: 254T.
3. Minimum Percent Efficiency: 89.

10 hp:
1) NEMA Frame: 256T.
2) Minimum Percent Power Factor: 74.
3) Minimum Percent Efficiency: 89.

15 hp:
1) NEMA Frame: 284T.
2) Minimum Percent Power Factor: 77.
3) Minimum Percent Efficiency: 90.

20 hp:
1) NEMA Frame: 286T.
2) Minimum Percent Power Factor: 78.
3) Minimum Percent Efficiency: 90.

25 hp:
1) NEMA Frame: 324T.
2) Minimum Percent Power Factor: 74.
3) Minimum Percent Efficiency: 91.

30 hp:
1) NEMA Frame: 326T.
2) Minimum Percent Power Factor: 78.
3) Minimum Percent Efficiency: 91.

40 hp:
1) NEMA Frame: 364T.
2) Minimum Percent Power Factor: 77.
3) Minimum Percent Efficiency: 93.

2. 1800 rpm.

1 hp:
1) NEMA Frame: 143T.
2) Minimum Percent Power Factor: 84.
3) Minimum Percent Efficiency: 82.

1-1/2 hp:
1) NEMA Frame: 145T.
2) Minimum Percent Power Factor: 85.
3) Minimum Percent Efficiency: 84.

2 hp:
1) NEMA Frame: 145T.
2) Minimum Percent Power Factor: 85.
3) Minimum Percent Efficiency: 84.

3 hp:
1) NEMA Frame: 182T.
2) Minimum Percent Power Factor: 86.
3) Minimum Percent Efficiency: 86.

5 hp:
1) NEMA Frame: 184T.
3) Minimum Percent Efficiency: 87.

7-1/2 hp:
1) NEMA Frame: 213T.
2) Minimum Percent Power Factor: 86.

10 hp:
1) NEMA Frame: 215T.
2) Minimum Percent Power Factor: 85.
3) Minimum Percent Efficiency: 89.

h. 15 hp:
 1) NEMA Frame: 256T.
 2) Minimum Percent Power Factor: 85.
 3) Minimum Percent Efficiency: 91.

i. 20 hp:
 1) NEMA Frame: 256T.
 2) Minimum Percent Power Factor: 86.
 3) Minimum Percent Efficiency: 91.

j. 25 hp:
 1) NEMA Frame: 284T.
 2) Minimum Percent Power Factor: 85.
 3) Minimum Percent Efficiency: 91.

k. 30 hp:
 1) NEMA Frame: 286T.
 3) Minimum Percent Efficiency: 92.

l. 40 hp:
 1) NEMA Frame: 324T.
 2) Minimum Percent Power Factor: 83.
 3) Minimum Percent Efficiency: 92.

m. 50 hp:
 1) NEMA Frame: 326T.
 3) Minimum Percent Efficiency: 93.

END OF SECTION 23 0513