Respiratory Decline and BiPAP

The module will provide the following education:

- Basic overview of respiratory stability and instability oxygenation and ventilation
- Arterial Blood Gasses (ABGS) awareness
- Bi-PAP/CPAP policy
 - Indications
 - Equipment
 - Contraindications
 - Roles/Responsibilities
 - Nursing Assessment
Respiratory Stability Definitions

Oxygenation

- Oxygenation is gas exchange, increasing the partial pressure of oxygen in the body
- Oxygenation Failure – inadequate alveolar gas exchange

Ventilation

- Ventilation is the provision of fresh air into the lungs, O2 in CO2 out
- Ventilation Failure – inadequate alveolar ventilation

Respiration

- The gas exchange between the body and the external environment
What is Respiratory Distress

Increased respiratory needs

- These patients could have an *increased or decreased* respiratory rate
- *Increased* oxygenation needs
- *Changes* in arterial blood gas levels
- *Decreased* responsiveness
Arterial Blood Gas Awareness

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal</th>
<th>Significance</th>
</tr>
</thead>
</table>
| pH | 7.35 - 7.45 | Indicates if the blood is acidic or alkalotic:
1. pH less than 7.35 = acidosis
2. pH greater than 7.45 = alkalosis |
| PaCO₂ | 35 - 45 | **Respiratory Parameter**
1. Hyperventilation blows off CO₂ ➔ decreased PaCO₂ ➔ respiratory alkalosis
2. Hypoventilation retains CO₂ ➔ increased PaCO₂ ➔ respiratory acidosis |
| HCO₃ | 22 - 26 | **Metabolic parameter - regulated by the kidneys.**
1. Decreased HCO₃ ➔ metabolic acidosis
2. Increased HCO₃ ➔ metabolic alkalosis |
| PaO₂ | 80 - 100 | Amount of oxygen dissolved in plasma |
| SaO₂ | 95 - 100% | Extent to which Hgb is saturated with oxygen.
Affected by pH, pCO₂, temperature and FiO₂. |
Respiratory Failure

Abnormalities of oxygenation and ventilation severe enough to threaten vital organs

Causes can be primary pulmonary disorder (starts in the lungs) or extra pulmonary disorder (starts other than the lungs).

Ventilation Failure =

- Inadequate alveolar ventilation
- Corrected with increased frequency of breaths

Oxygenation Failure =

- Inadequate alveolar pulmonary gas exchange
- Corrected with oxygen or pressure
Per the BiPAP/CPAP Therapy Policy

Respiratory instability is defined as:

- Respiratory rate equal to or greater than 30 breaths per minute
- Oxygen requirement greater than 50% while on positive pressure
- Arterial pH equal to or Less than 7.35
- Decreased responsiveness

Patients who meet the criteria for respiratory instability could be cared for in any care area at the discretion of the Respiratory Care Medical Director
What is the Difference between BiPAP and CPAP?

Bi-Level Positive Airway Pressure (BiPAP)

BiPAP augments patient ventilation by supplying two levels of positive pressure
- One level on inspiration
 - IPAP - inspiratory pressure = pressure that occurs when patient inhales for a breath
- One level on exhalation
 - EPAP – expiratory pressure = continuous positive pressure
- Assists patients' respiratory efforts
- Improves oxygenation AND ventilation

Continuous Positive Airway Pressure (CPAP)

CPAP aids at one level of positive pressure through the breathing cycle
- “Stents” open airways – pressure helps keep airways open
- Improves ONLY oxygenation
Clinical Indications of BiPAP Therapy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstructive Sleep Apnea (OSA)</td>
<td>Prophylactic postoperative patients</td>
</tr>
<tr>
<td>Chronic Obstructive Lung Disease exacerbation</td>
<td>Obesity/Hypoventilation Syndrome</td>
</tr>
<tr>
<td>Neuromuscular weakness</td>
<td>Bronchopulmonary Dysplasia (BPD)</td>
</tr>
<tr>
<td>Restrictive Lung Disease</td>
<td>Chronic Respiratory Failure</td>
</tr>
<tr>
<td>Cardiogenic Pulmonary Edema</td>
<td>Failure to wean from mechanical ventilation</td>
</tr>
<tr>
<td></td>
<td>Acute measure to deter impending intubation</td>
</tr>
</tbody>
</table>
Relative Contraindications of BiPAP Therapy

- Altered mental status/Delirium
- Bullous lung disease/Pneumothorax
- Pathologically low blood pressure
- Severe cardiac arrhythmias or acute coronary artery disease
- Stroke with impaired cough and/or gag reflex

- Seizures
- Facial fractures or burns
- Excessive secretions
- Vomiting
- Patients susceptible to Pneumocephauls
- Cerebral spinal fluid leaks
- Abnormalities of the cribiform plate
- Prior history of head trauma
- Pneumocephauls
Contraindications to BiPAP Therapy

- Unresponsive patients
- Bilateral hand restraints
- Patient is unable to cough or clear their airway
- Safety attendants should not be used to monitor for complications related to BiPAP/CPAP for unresponsive patients
- Safety attendants may be required for a patient with delirium who frequently removes the mask

Patients with contraindications may still receive Bi-PAP therapy at the discretion of the Respiratory Care Medical Director
Roles and Responsibilities

Licensed Respiratory Therapist (LRT)

- Set up and titrate pressures
- Maintain functionality of equipment
- Monitor patient for changes in status / complications
- Document as outlined in policy

Nursing

- Notify LRT of any ongoing or unresolved alarms
- Aid in adjusting mask for patient
- Assess for skin integrity
- May remove patient from BIPAP/CPAP for patient care needs but should notify the LRT prior to removal.
- Monitor for changes in patient status / complications
- Maintain communication with ordering provider regarding patient’s tolerance or intolerance to therapy, signs and symptoms of respiratory compromise.
- Documentation if therapy is in place
BiPAP Nursing Assessment Standards

<table>
<thead>
<tr>
<th>Work of breathing</th>
<th>Mentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Tolerance of BiPAP Therapy</td>
<td>Oxygen Saturation - Continuous SPO2 needs to be ordered</td>
</tr>
<tr>
<td>Lung Sounds</td>
<td>Respiratory Rate</td>
</tr>
<tr>
<td>Mask fit and skin integrity</td>
<td>Lab values as ordered by provider – Examples: ABGs</td>
</tr>
</tbody>
</table>
Transporting patients requiring BiPAP

- A patient who **does demonstrate** respiratory instability without BiPAP will be transported via Bi-PAP/CPAP device capable of non-invasive ventilation. Respiratory is required to accompany patient throughout transport.

- If a patient **does not demonstrate** respiratory instability without BiPAP, they will be placed on appropriate oxygen device for transport. Respiratory is not required to accompany this patient.
Please view the linked video

https://vimeo.com/403035876